
PRO feature attribution documentation
Author: Jiaxuan Wang
Date: 3/28/2023

Overview
Predictive Response Optimization (PRO) is a machine learning system using reinforcement
learning to fight unauthorized scraping. For IG logged in, PRO decides what responses to issue
to users who are suspected to be scrapping. For IG logged out, it decides whether to block
requests from an ip address. Despite its importance, for long, we treat PRO as a black box,
making it hard to understand its logic to debug the system. Feature attribution is one approach
to fill this void.

Feature attribution has the following benefits
- It improves model understanding and enhances defensibility of our decisions

For assessor requests for safeguard evidencing we often get questions around why
a particular response was chosen for a user and the most important features which
influence PRO's decision. With feature attribution in place, we can answer those
questions (see use case 1).

- It helps monitoring distribution shifts in the production traffic
This will aid debugging when response distribution spikes or when online MSE degrades
(focus our attention on the important shifting feature, see use case 2).

The purpose of this wiki is to a) explain how we compute feature attribution so that you have the
necessary terminology to understand our feature attribution dashboard (methodology section),
b) showcase a few use cases of the dashboard (example use cases section), and c) document
all the tools provided by the dashboard (reference section).

Feature attribution dashboard (“go pro_attribution”) currently supports
- A: Visualizing most important features
- B: Tracking feature attribution and value shifts
- C: Visualizing decision logic (attribution over value)
- D: Monitoring the volume of logged feature attribution

for both IG logged in and out. Furthermore each of the aforementioned features can be filtered
by action and context features.

There are additional contexts on design choices and tools built around feature attribution
besides the dashboard, which are tracked in T128501575.

https://www.internalfb.com/intern/unidash/dashboard/active_scraping_threat_mitigation/pro_feature_attribution/?dimensional_context_872603613780751=%7B%22macros%22%3A[%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%223001198523509714%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_action_logged_in%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22159029360296168%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_context_logged_in%22%7D%2C%7B%22values%22%3A[%225%22]%2C%22identifier%22%3A%221730446190744041%22%7D%2C%7B%22values%22%3A[%225%22]%2C%22identifier%22%3A%22select_top_n_logged_in%22%7D%2C%7B%22values%22%3A[%22TRUE%22]%2C%22identifier%22%3A%22148587138113786%22%7D%2C%7B%22values%22%3A[%22TRUE%22]%2C%22identifier%22%3A%22select_use_abs%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22502139438799432%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_action%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22194643419850985%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_context%22%7D%2C%7B%22values%22%3A[%225%22]%2C%22identifier%22%3A%22166860379463944%22%7D%2C%7B%22values%22%3A[%225%22]%2C%22identifier%22%3A%22select_top_n%22%7D%2C%7B%22values%22%3A[%22TRUE%22]%2C%22identifier%22%3A%221622533064930177%22%7D%2C%7B%22values%22%3A[%22TRUE%22]%2C%22identifier%22%3A%22select_use_abs_logged_out%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22734685968223827%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_action_conditional_shift_logged_in%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22139728075388939%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_context_conditional_shift_logged_in%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22177914694950007%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_action_conditional_shift%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%229258085107535211%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_context_conditional_shift%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%221204852520422948%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_action_feature_value_logged_in%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%221727437377672467%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_context_feature_value_logged_in%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22511280151077824%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_action_feature_value%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%221197654890954230%22%7D%2C%7B%22values%22%3A[%22All%22]%2C%22identifier%22%3A%22select_context_feature_value%22%7D%2C%7B%22values%22%3A[%222023-03-09%22]%2C%22identifier%22%3A%22select_start_date%22%7D%2C%7B%22values%22%3A[%222023-03-09%22]%2C%22identifier%22%3A%22720156956345130%22%7D%2C%7B%22values%22%3A[%222023-03-16%22]%2C%22identifier%22%3A%22select_end_date%22%7D%2C%7B%22values%22%3A[%222023-03-16%22]%2C%22identifier%22%3A%22614816867311520%22%7D]%2C%22operators%22%3A[]%2C%22movingAggregation%22%3A%22DEFAULT%22%2C%22granularity%22%3A%22DEFAULT%22%2C%22limit%22%3A5%7D&events=%7B%223001198523509714%22%3A%7B%223001198523509714%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%223001198523509714%22%7D%2C%22select_action_logged_in%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%223001198523509714%22%7D%7D%2C%22159029360296168%22%3A%7B%22159029360296168%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22159029360296168%22%7D%2C%22select_context_logged_in%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22159029360296168%22%7D%7D%2C%221730446190744041%22%3A%7B%221730446190744041%22%3A%7B%22data%22%3A%225%22%2C%22publisher_id%22%3A%221730446190744041%22%7D%2C%22select_top_n_logged_in%22%3A%7B%22data%22%3A%225%22%2C%22publisher_id%22%3A%221730446190744041%22%7D%7D%2C%22148587138113786%22%3A%7B%22148587138113786%22%3A%7B%22data%22%3A%22TRUE%22%2C%22publisher_id%22%3A%22148587138113786%22%7D%2C%22select_use_abs%22%3A%7B%22data%22%3A%22TRUE%22%2C%22publisher_id%22%3A%22148587138113786%22%7D%7D%2C%22502139438799432%22%3A%7B%22502139438799432%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22502139438799432%22%7D%2C%22select_action%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22502139438799432%22%7D%7D%2C%22194643419850985%22%3A%7B%22194643419850985%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22194643419850985%22%7D%2C%22select_context%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22194643419850985%22%7D%7D%2C%22166860379463944%22%3A%7B%22166860379463944%22%3A%7B%22data%22%3A%225%22%2C%22publisher_id%22%3A%22166860379463944%22%7D%2C%22select_top_n%22%3A%7B%22data%22%3A%225%22%2C%22publisher_id%22%3A%22166860379463944%22%7D%7D%2C%221622533064930177%22%3A%7B%221622533064930177%22%3A%7B%22data%22%3A%22TRUE%22%2C%22publisher_id%22%3A%221622533064930177%22%7D%2C%22select_use_abs_logged_out%22%3A%7B%22data%22%3A%22TRUE%22%2C%22publisher_id%22%3A%221622533064930177%22%7D%7D%2C%22734685968223827%22%3A%7B%22734685968223827%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22734685968223827%22%7D%2C%22select_action_conditional_shift_logged_in%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22734685968223827%22%7D%7D%2C%22139728075388939%22%3A%7B%22139728075388939%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22139728075388939%22%7D%2C%22select_context_conditional_shift_logged_in%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22139728075388939%22%7D%7D%2C%22177914694950007%22%3A%7B%22177914694950007%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22177914694950007%22%7D%2C%22select_action_conditional_shift%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22177914694950007%22%7D%7D%2C%229258085107535211%22%3A%7B%229258085107535211%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%229258085107535211%22%7D%2C%22select_context_conditional_shift%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%229258085107535211%22%7D%7D%2C%221204852520422948%22%3A%7B%221204852520422948%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%221204852520422948%22%7D%2C%22select_action_feature_value_logged_in%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%221204852520422948%22%7D%7D%2C%221727437377672467%22%3A%7B%221727437377672467%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%221727437377672467%22%7D%2C%22select_context_feature_value_logged_in%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%221727437377672467%22%7D%7D%2C%22511280151077824%22%3A%7B%22511280151077824%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22511280151077824%22%7D%2C%22select_action_feature_value%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%22511280151077824%22%7D%7D%2C%221197654890954230%22%3A%7B%221197654890954230%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%221197654890954230%22%7D%2C%22select_context_feature_value%22%3A%7B%22data%22%3A%22%27All%27%22%2C%22publisher_id%22%3A%221197654890954230%22%7D%7D%2C%22720156956345130%22%3A%7B%22select_start_date%22%3A%7B%22data%22%3A%222023-03-09%22%2C%22publisher_id%22%3A%22720156956345130%22%7D%2C%22720156956345130%22%3A%7B%22data%22%3A%222023-03-09%22%2C%22publisher_id%22%3A%22720156956345130%22%7D%7D%2C%22614816867311520%22%3A%7B%22select_end_date%22%3A%7B%22data%22%3A%222023-03-16%22%2C%22publisher_id%22%3A%22614816867311520%22%7D%2C%22614816867311520%22%3A%7B%22data%22%3A%222023-03-16%22%2C%22publisher_id%22%3A%22614816867311520%22%7D%7D%7D
https://www.internalfb.com/intern/tasks/?t=128501575

Methodology

We use SHAP1 to obtain local feature attribution, that is attributing PRO’s decision for each
sample to the features used by PRO. For example, to answer the question why an ip got
blocked for IG logged out, local feature attribution could reveal that the ip has too many
requests for the day and that’s why PRO blocked it.

We implement SHAP online on WWW. That is feature attribution is computed at the same time a
live decision is made by PRO. Due to the expensive nature of computing SHAP, we only
compute it for a small proportion of input.

Q: Why do we use SHAP for feature attribution?
A: We choose SHAP because it is model agnostic. PRO not only has categorical input, but also
the business logic on top of the model’s output (e.g., cooldown, allowed_actions) makes PRO’s
decision surface non smooth. We therefore cannot turn to methods such as integrated gradient
or CAM that assumes access to gradient. Furthermore, being model agnostic allows our
approach to continue working when the underlying machine learning model is changed. In
addition to being model agnostic, SHAP is widely used and has game theoretic interpretation
stemming from Shapley Value.

Q: How to compute SHAP?
A: In short, the attribution of a feature in SHAP is the difference in output when adding the
feature to a set of features, averaged over all possible feature sets. For example, denote v as
the decision function for PRO that takes a set of input containing two features A and B, the
SHAP value of B is (v({A, B}) - v({A}) + v({B}) - v({})) / 2. In other words, we try all the ordering in
which B is present in the input set and observe the difference in output when excluding B from
the set. In reality, we don’t work with set functions. We usually have a function f with two inputs
A and B. Then, what does it mean to exclude B in the formula above? Well, it means we define
a value for A and B representing the case they are “excluded”. That is we compute (f(A, B) - f(A,
B’) + f(A’, B) - f(A’, B’)) / 2 for B’s attribution, where A’ and B’ are called the
background/reference/baseline value of A and B, used to contrast with the actual value of A and
B. The background values are usually set to some typical values of the feature. In the case of
PRO, we set background value to 0 for continuous features and “” for categorical features. In
the future, we may support letting developers change the background value. I prefer explicitly
setting this value because it is clearer what SHAP is computing. If we define this background as
expected value, it shifts through time, which makes it hard to see and interpret the meaning of
feature attribution. In our case, the meaning of attribution for a categorical/continuous feature is
the difference in PRO’s decision (1 if the decision changed, 0 not) when changing its value from

1 As a technical aside, there are a few variants of SHAP (e.g., conditional SHAP and independent SHAP),
we implement independent SHAP as it is simple to implement and has causal interpretation (see Janzing
et. al.; it turns out all those variants can be unified with a casual graph, therefore if we want to try other
variants later, we can: see Jiaxuan et. al. or ask me for details).

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
http://proceedings.mlr.press/v108/janzing20a/janzing20a.pdf
http://proceedings.mlr.press/v108/janzing20a/janzing20a.pdf
http://proceedings.mlr.press/v130/wang21b/wang21b.pdf

its current value to “”/0 respectively, averaged over the on or off state of other features (i.e.,
whether other features take the background value).

Q: Why was SHAP implemented online in WWW?
A: Implementing SHAP online guarantees the feature attribution uses the same settings of the
PRO (e.g., metric weights, allowed actions, exploration factors, etc.) when a decision is made. If
we delay the feature attribution to offline, we need to make more infrastructure changes to
ensure the consistency of attribution settings, which is non-ideal for maintenance purpose (say
someone added a new logic for PRO in WWW, we need to add the same logic offline to make
feature attribution consistent with it). Furthermore, computing SHAP online has a computational
benefit as we don’t need to call through the network when querying PRO’s feature stores
repeatedly.

Keep in mind that SHAP as well as any explanation methods are no more than summaries of
the decision surface. It won’t test for cases that are far from the training distribution. However, a
complete understanding of the decision surface is nearly impossible with complex models that
have lots of features. If one aims for a complete understanding, we need to change model
structure to something inherently interpretable (e.g., linear model with no input interactions, low
depth decision tree, GAM, shape constrained models, etc.), though it is also likely to restrict the
expressiveness/accuracy of the model itself.

Example use cases
This section gives 2 use cases that I believe can be useful to oncalls or anyone interested in
understanding PRO’s behavior.

Understanding PRO’s decision logic

For understanding the decision logic of PRO (e.g., what was the criteria PRO used to block an
user?), one can use panels A and C. A shows an overview of important features, while C dives
into one feature and shows you what values of this feature are important. For example, looking
at the logged out feature attribution panel A below, we see that “log_request_count_1d” is the
only important feature for deciding whether to block an ip (i.e., action 1.0). Furthermore, we see
that only high values of request count triggers the blocking action (a note on notation:
“log_request_count_1d=>⅘ attribution” means the 4th out of 5 equally spaced bin for the
continuous feature log_request_count_1d). On the flip side, when focusing on action 0.0, we
see high request count decreases the chance of getting no response.

To further understand how the decision was made, panel C below shows us that
“log_request_count_1d” is only important when it passes 76 percentile (reading from the left
plot, 76 percentile along the x axis is when attribution starts to be non zero), which corresponds
to 3.77 “log_request_count” (reading from the right plot, which maps from feature percentile to
its actual value).

Now if we zoom in to samples with no response (i.e., action 0.0). We see that
“log_request_count_1d” decreases the likelihood of issuing no response at the 76th percentile.
In other words, it increases the likelihood to block once request count is high (confirming our
insight from the overview plot). On the other hand, we see that high user count on ip increases
the likelihood of PRO to issue no response, which comes at no surprise as more user count on
ip justifies increases in requests coming from the ip.

We can repeat the exercise, filtering for samples that are blocked (i.e., action 1.0). We see
again that request count is 100% responsible for choosing the blocked action2.

In summary, all the above plots show us that PRO blocks ip addresses with high request count
while accounting for number of user count on the ip.

Understanding spikes in responses
Often, we want to understand irregularities in PRO’s behavior, such as spikes in some of its
recommended actions or degradation in online MSE. Feature attribution can be used to locate

2 You might have noticed that the attribution plot for the block action has no value from 1 to 76 percentile
because no samples that get the blocking decision have value in that range. If we want to see the
attribution for all actions regardless of the decision made, we need to repeat doing SHAP for all actions
(currently only doing attribution on the action chosen), which will set the computation cost at (number of
action - 1) times the current computation.

changes in important features that correlate with PRO’s irregularities, thus speeding up the
investigation of root cause (e.g., shift in input caused by upstream classifier degradation; shift in
model logic due to addition or deprecation of features). The cause of irregularities along time
are either feature/covariate shift (i.e., input signal changes) or conditional shift (i.e., model logic
changes), which are both tracked in panel B.

Take understanding spikes in actions for instance (e.g., why we blocked much more people
today than yesterday), on 3/12/2023, the intervention team3 observed a sudden spike in
IgFakeAccount and a drop in IgBlockAllActionsSMSChallenge.

Looking at panel B shown below for IgBlockAllActionsSmsChallenge, it is evident that the
feature “shared_session_age_in_seconds_production” was important before 3/12/2023, but no
longer shows up as important later on (left figure tracks attribution mean for top features across
time). Not only did its attribution change, looking at the right plot (which tracks the feature mean
across time), we can see that the mean shifted for this feature as well.

3 Thanks for flagging this spikePriya Krishnamurthy

mailto:priyadhk@fb.com

It turns out the feature was removed from the model due to capacity issues in training
(D43843906) along with all other features starting with “shared”. The removal of the feature was
made on 3/6/2023 but apparently the model was still using it until 3/12/2023. Without panel B,
we would have taken longer to locate this change.

A few points to observe
- We would’ve located the change entirely based on the drop in attribution, regardless of

shift in feature mean (right graph).
- Note that the right graph tracks the feature mean for top features sorted by absolute

value in attribution. This complements previous dashboards (real time feature monitoring
dashboard and end to end interpretation dashboard) to track feature mean. Filtering by
feature importance makes users easier to consume the result. Only important features
affect PRO by definition.

We can confirm the importance of the deleted features by focusing on the two actions
Ig_Fake_Account and Ig_Block_All_SMS_Challenge on 3/12/2023. 4 out of the top 10 features
for those two actions have been deprecated, therefore it is not surprising that the two actions’
response count changed the following day. However, our tool doesn’t tell you whether the

https://www.internalfb.com/diff/D43843906
https://fburl.com/unidash/ln30dapd
https://fburl.com/unidash/ln30dapd
https://fburl.com/unidash/zp31xfos

response count will go up or down.

Dashboard panels reference
This section describes in detail what each plot in the dashboard does and motivates their usage.
Currently, the feature attribution dashboard supports visualization of attributions for IG logged in
and out. Panels related to IG logged in/out are listed on the left/right side of the dashboard
respectively.

Knobs: Adjusting the aggregation criterion for panels
For analysis, we are often interested in only a subset of users/ip addresses that were actioned
upon by PRO (e.g., only aggregate feature attribution across users given Ig_Fake_Account who
are detected by a particular policy). Tools in this section enable various ways to slice the data.

Dates: Start and end dates adjust the time range to pull data from

Action: Recommended action by PRO (left: IG logged in, right: IG logged out). For IG logged
out, 1.0 means block and 0.0 means no response.

IG logged in IG logged out

Context: Filtering based on contextual/categorical features. If selected, only aggregate for
samples with the selected feature value. The dropdown menu has items in the format of
“featureName=>value”. For example selecting “ig_bot_detection_gbdt_userinfo_classifier=>0”
means aggregating over samples where ig_bot_detection_gbdt_userinfo_classifier did not fire.

IG logged in IG logged out

Top N: Adjust the number of features to show (sorted by aggregated attribution). Useful to
declutter your graph.

Use abs: Whether to aggregate on the absolute value of the feature attribution. Setting it to true
to show feature importance. If false, use the original feature attribution (useful to observe the
direction of impact in panel D: e.g. does setting bin_fai_score to “safe” increase or decrease the
chance of the user getting UFAC).

Breakdown value: Adjust whether to breakdown panel A by value

If set to true, we see that panel A shows attribution broken down into values of features. For
example, for categorical features like “bin_account_age”, the attribution is on each value of the
feature. For continuous features like “time_spent_1d_1_forecast_value” (i.e., the forecast value
for the time_spent_1d metric with prediction horizon of 1 day), the attribution is on each binned
value. As shown below, the continuous values are broken into 5 bins (e.g.,
“time_spent_1d_1_forecast_value=>3/5” means it is the 3rd equally splitted bin out of 5 bins).
The total bin value can be adjusted as well.

If set to false, we only show the feature names but not the values.

N continuous bins: Adjust the number of bins to split continuous features when breakdown
value is set to true in panel A.

Observational: In panel C, if set to true, we will ignore the attribution based on SHAP
computation but show empirical response distribution in panel C. This function is useful to
visualize the conditional distribution of Y|X. In contrast, when set to the default of false, we are
visualizing the interventional distribution Y|do(X). The difference is that the former is
correlational while the later is causal. Note that we cannot average the observational attribution
to gauge the importance of the feature as we do for interventional attribution b/c it will just result
in the probability a particular response is given (same for all features therefore useless).

Here it shows that low time spent and account age in bin2 are likely to get a high percentage of
UFAC responses. To further help one get insight using the observational distribution, we also
have a plot of empirical count of action applied through PRO through the angle of feature values
shown below.

Features to display: Only show the selected features in panel C.

Panel A: Visualizing important features
This panel shows an overview of feature importance (i.e., mean value of feature attribution
aggregated for all samples with non null feature attribution). The Y axis shows the
responses/actions given and the X axis shows the aggregated feature attribution for the top N
features with the highest feature attribution stacked. This panel is useful to get a high level
understanding of what PRO relies on. One can use this information to consult with domain
experts whether the important features are robust to distribution shift. One can adjust the
number of top features to show per response, whether to break down attribution by feature
value, use abs transformation on the attribution, number of bins for continuous features as
explained in the knobs section.

IG logged in:

Here we show the top 5 features without using the abs transformation. Note that there are more
than 5 features in the legend b/c the top 5 features are computed per action.

IG logged out:

In the above IG logged out example, for no response (i.e., action 0.0) , both
“log_request_count_1d” and “log_user_count_on_ip” play a role, yet for the blocking decision
(i.e., action 1.0) , only “log_request_count_1d” is important.

Panel B: Tracking feature attribution and value shifts
Models trained are often fragile, meaning that they tend to perform well in the training
distribution but not in deployment. Ideally, we want to learn a model that is robust to distribution
shift to begin with, but this is a lofty goal that often relies on knowing how the distribution is
shifting. A more attainable objective is to monitor distribution shifts and take actions to correct
model behavior (e.g., revert the model back to an earlier version) or input discrepancy (e.g.,
understanding why the feature shifts) after we notice a shift in distribution. Furthermore, the
predicted metrics themselves aren’t always reliable. Take friction metrics for example, what if in
the future flytrap report can be automated and no longer reflect user friction? This will result in a
shift in the model decision logic that we want to know, again requiring tracking of model logic
across time.

The tools built in this panel helps track distribution shift, both in the input distribution (i.e., P(X)
where X is the input) and the conditional distribution (i.e., P(Y|X) where Y is the predicted
metrics). All panels here are good candidates for setting up alerts.

Feature attribution and value shift:
- Feature attribution may shift due to covariate shift (e.g., more percentage of actioned

samples leads to weighting them in aggregation more) or model logic shift (e.g., the
model learned to depend on different features from different days). This is shown in the
left graph below. Shifts in feature attribution can be used to explain spikes in an action
(e.g., if model logic changes, even with the same input distribution, the distribution of
model responses will change), facilitating finding the root cause (e.g., did the input
distribution shift? Did the data used to train the model get corrupted? Did the metric
definition change?).

- Feature value/covariate shift for important features are tracked on the right graph. Here
we plot the average value for the top N important features across time (for categorical
features, this means tracking the percentage of a particular value for a feature, e.g., what
proportion of “bin_fai_score” is “safe”). We focus on important features because non
important features don't affect PRO’s behavior (e.g., response distribution shift, MSE
degradation, and etc.).

IG logged In:

Here we see that “shared_session_age_in_seconds_production” stopped being important
starting on 3/12/2023. It turns out the feature was removed from the model due to capacity
issues in training (D43843906).

IG logged out:

All features appear to have stable attribution and value in the time period chosen.

Caveats: Both attribution and value tracking are not without flaws. For example, they do not
detect all cases in which the model or input could be shifting, resulting in false negatives (e.g.,
the input distribution can appear to be stable in our graph as long as its mean is stable, but
other statistics can greatly vary).

Tracking day to day change in feature attribution:

https://www.internalfb.com/diff/D43843906

We also provide a way to track day to day changes of metric attribution. On the left, we plot
feature attribution changes for top features and on the right we plot the maximum changes of
the left plot. This helps quantify the attribution shift.

IG logged in

IG logged out:

Panel C: Visualizing decision logic (attribution over value)

We are often not only interested in finding important features, but also want to know how feature
values.affect the decision. For example, it is expected to see that PRO relies on the number of
requests to decide blocking an user or not. However, it will be alarming if we see PRO blocks
users with few requests but allows users with a high number of requests. In other words, we
want to know how PRO is using “important” features. The tools built in this section answers
those questions by aggregating feature attribution for each feature value (e.g., what is the mean
attribution when the number of requests per day from a user is below 10). For continuous
features, we bin the data into 100 equal sized buckets and show the aggregated result for each
percentile. For categorical features, we aggregate directly based on feature values.

Decision logic on continuous features

Continuous features need to be bucketed because each sample likely has distinct feature
values. Since SHAP is computed with monte carlo simulation, we need enough samples

aggregated to show a feature’s actual impact. Furthermore, bucking the feature values enables
us to visualize all features on the same x-axis. In the left graph, we show attribution versus
value percentile, and in the right graph, we show the mapping from value percentile to the
minimum feature value that reaches the percentile (e.g., if the feature value for the 50th
percentile ranges from 5 to 10, the y value for the 50th percentile is 5). The percentile to value
mapping is useful to gauge the actual distribution of features.

IG logged in:

We see that high values of “time_spent_1d_1_forecast_value” is important for PRO’s decision.
Forecast_value variables are named in the convention of “<metric>_<horizon>_forecast_value”.
In this case, the metric is “time_spent_1d” and the prediction horizon is 1 (meaning the next
day).

IG logged out:

Here we see that “log_request_count_1d” is important for the decision of blocking (set action
filter to 1.0). In particular, the model increased its likelihood to block when its value is above 76
percentile, which corresponds to 3.77 “log_request_count” (reading from the right plot).

Decision logic on context/categorical features

Similar to continuous features, we show both feature attribution and feature distribution.

IG logged in:

Here we see that bin_account_age of “bin_0” is most important for PRO’s decision making.

IG logged out:
Contextual features are not used in PRO IG logged out as of 3/17/2022, therefore no figures.

Observational action count on feature values:

These plots are the empirical count of how many responses are given based on feature value. I
recommend filtering by important features to get insight on what the model is doing.

IG logged in:

Here we filter for “time_spent_1d_1_forecast_value” for continuous features, and
“bin_account_age”, “bin_fai_score”, and “detected_session_is_alive” for categorical features.
We see that no response (purple line) dominates in the middle section of the curve.

IG logged out:

Here we see that when request count is less than 82 percentile, no response dominates. Ignore
the “All” action as it is a placeholder with always 0 count.

Panel D: Monitoring the volume of logged feature attribution

Due to the high cost of SHAP computation (i.e., perturbing every feature for different orderings
in features), we can only afford to sample a few data points for feature attribution. The plots
below show the percentage of features logged out of all traffic sent to PRO (currently set around
0.1% as shown in the left figure) and the total volume sent to PRO (figure on the right).

In the past, we noticed that samples was silently dropped when there were too many calls to
model inference due to SHAP (D43668629, D43402921). To overcome this, we optimized
feature attribution to only attribute to features stored in the online model (D43848199). While
this solves the problem for now, in the future, as the number of features increase, we may again
run into the same problem (i.e., no feature attributions are logged due to high number of
inference calls). The solution is to randomly sample features that are attributed to and
aggregate the result (D44234422, see the next section).

Troubleshooting dropping in feature attribution:

https://www.internalfb.com/diff/D43668629
https://www.internalfb.com/diff/D43402921
https://www.internalfb.com/diff/D43848199
https://www.internalfb.com/diff/D44234422

Oncall should monitor the left panel, making sure that the percentage of logged feature
attribution does not drop to zero. In case it does, reduce “shap_n_random_features” setting in
the config (i.e., reduce number of features to attribute to for each sample) and increase the
sampling rate to enlarge coverage4. Concretely, if you choose to use less random features, say
you change random features from 10 to 1, you should increase the sampling rate by 10 times to
make sure that each feature has in expectation the same number of attribution as before.

Future good to have
● Refactor Daiqueries used in the dashboard with jinja to make future change easier
● Display confidence interval and number of data points for the aggregated attribution: add

a column in daiquery counting var(sum(X)/n) = var(X) / n ~= [sum(X^2) - sum(X)^2] / n^2
where n is number of observations and X is individual attribution

● Provide a general framework to allow explanation at different boundaries (e.g., allowing
grouping related features, support on manifold SHAP, and etc); this could improve
efficiency and generate different layers of insight

● Feature store allowing live queries on feature attribution
● Offline feature attribution (observational instead of interventional, and running the risk

that we are not explaining the model the same time the decision is made) for fast
explanation (Example notebook)

● Explain each action regardless if the action is chosen (currently we are explaining the
decision, but could be useful to ask what increases the chance of UFAC regardless if
UFAC is chosen, this increases computation load to |action|-1 times)

● Allow customized setting of background feature values
● Allow explaining random subset of features in a way that equals in expectation with

exact SHAP computation (i.e., accounting for feature ordering), current implementation
amounts to always ordering the chosen features at the beginning

Q&A
Q: For each sample, will the attribution to all features sum to 1 setting use_abs to false?
A: No, it depends on the background value. The only guarantee in our case is the sum should
be between 0 and 1. Denote x as the sample's foreground/current value and x’ as a sample with
each feature set to the background value. SHAP guarantees that the sum of attribution for all
features is f(x)-f(x’) where f is the function to explain. In our case, we are explaining the
decision, therefore f(x) is 1 because it equals the decision made, but f(x’) may not be 0. For
example if both x and x’ results in no response, then the sum of attribution will be 0. To
concretely illustrate this point, we can look at the logged out attribution below as it does not
have exploration as of 3/22/2023. For the no response action, the sum is 0 b/c the background
response is no response. For the block action, attribution sum to 1 as expected.

4 To ensure that the sampling will yield the same attribution in expectation with the exact SHAP result, one
needs to randomly sample an ordering of features and update feature attribution according to that order;
However, as a quick fix, we can ignore this technicality

https://www.internalfb.com/code/configerator/[4a8fe1908e508fe015f9d862397946b77fd70864]/source/integrity/predictive_response_optimization/astm_ig_accounts/prod.cconf?lines=325
https://www.internalfb.com/code/configerator/[4a8fe1908e508fe015f9d862397946b77fd70864]/source/integrity/predictive_response_optimization/astm_ig_accounts/prod.cconf?lines=323
https://fburl.com/anp/53wm1zhv

Exploration also affects the sum as well. In our case f is a non-deterministic function due to
Thompson sampling, therefore f(x’) is a random variable that is either 0 or 1. We therefore
expect actions that are more random to deviate more from the sum of 1. Below, we see that no
response, Ig_Block_All_Action_Recaptcha, Ig_Block_All_Actions_SMS_Challenge and
Ig_Compromised_Account have the most explorations (first graph below), their feature
attribution responses are indeed the furthest away from 1 (second graph below). Note that we
want to keep exploration as part of the system to explain because certain responses are the
results of exploration.

